Highly pathogenic Alzheimer's disease presenilin 1 P117R mutation causes a specific increase in p53 and p21 protein levels and cell cycle dysregulation in human lymphocytes.
نویسندگان
چکیده
Cell cycle (CC) reentry in neurons precedes the formation of amyloid-β (Aβ) plaques in Alzheimer's disease (AD). CC alterations were also detected in lymphocytes from sporadic AD patients. In the present study, we investigated the influence of nine presenilin 1 (PS1) mutations (P117R, M139V, L153V, H163R, S170F, F177L, I213F, L226F, E318G) on CC and Aβ production in immortalized B-lymphocytes from familial AD (FAD) patients and in stably transfected human embryonic kidney cells. In both cell types, only the P117R mutation increased levels of key G1/S phase regulatory proteins, p53, and its effector p21, causing G1 phase prolongation with simultaneous S phase shortening, and lowering basal apoptosis. The CC changes were rescued by inhibition of p53, but not of γ-secretase. Moreover, the investigated PS1 mutants showed differences in the increased levels of secreted Aβ40 and Aβ42 and in Aβ42/Aβ40 ratios, but these differences did not correlate with CC patterns. Altogether, we found that both CC regulation and Aβ production differentiate PS1 mutations, and that CC PS1 activity is mediated by p53/p21 signaling but not by γ-secretase activity. The identified CC dysregulation linked with increased p53 and p21 protein levels distinguishes the highly pathogenic PS1 P117R mutation and may contribute to the specific severity of the clinical progression of FAD associated with the mutation in the PS1 117 site. These findings suggest that impairment in lymphocyte CC might play a pathogenic function in AD and are relevant to the development of new diagnostic approaches and personalized therapeutic strategies.
منابع مشابه
Functional and Physical Consequence of Human Immunodefficiency Virus Transactivator TAT Interaction with Human Cell Cycle Regulator p53
Human immunodeficiency virus (HIV) transactivator Tat is a potent activator of both viral and cellular genes. Tat has also been implicated in the development of AIDS-related malignancy. Here, we show that Tat physically and functionally is able to sequester the cell cycle check point protein p53. This sequestration results in non-functional promoter activity of cyclin-dependent kinase/cyclin i...
متن کاملAccelerated Amyloid Deposition in the Brains of Transgenic Mice Coexpressing Mutant Presenilin 1 and Amyloid Precursor Proteins
Missense mutations in two related genes, termed presenilin 1 (PS1) and presenilin 2 (PS2), cause dementia in a subset of early-onset familial Alzheimer's disease (FAD) pedigrees. In a variety of experimental in vitro and in vivo settings, FAD-linked presenilin variants influence the processing of the amyloid precursor protein (APP), leading to elevated levels of the highly fibrillogenic Abeta1-...
متن کاملProteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations.
The Notch family of proteins consists of transmembrane receptors that play a critical role in the determination of cell fate. Genetic studies in Caenorhabditis elegans suggest that the presenilin proteins, which are associated with familial Alzheimer's disease, regulate Notch signaling. Here we show that proteolytic release of the Notch-1 intracellular domain (NICD), an essential step in the ac...
متن کاملEffects of Trichostatin A on the Histone Deacetylases (HDACs), Intrinsic Apoptotic Pathway, p21/Waf1/Cip1, and p53 in Human Neuroblastoma, Glioblastoma, Hepatocellular Carcinoma, and Colon Cancer Cell Lines
Background: The aberrant and altered patterns of gene expression play an important role in the biology of cancer and tumorigenesis. DNA methylation and histone deacetylation are the most studied epigenetic mechanisms. Histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA) and trichostatin A (TSA) are a group of anticancer compounds for the treatment of solid and hematological canc...
متن کاملInvestigation of Solvent Effect on CUA Codon Mutation: NMR Shielding Study
P53 is one of the gene that has important role in human cell cycle and in the human cancers too.Models of codon substitution make it possible to separate mutational biases in the DNA fromselective constraints on the protein, and offer a great advantage over amino acid models forunderstanding the evolutionary process of proteins and protein-coding DNA sequences. In thiswork, we investigated abou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Alzheimer's disease : JAD
دوره 32 2 شماره
صفحات -
تاریخ انتشار 2012